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The fluctuation-dissipation theorem (FDT) plays a fundamental role in understanding
quantum many-body problems. However, its applicability is limited to equilibrium
systems and it does in general not hold in nonequilibrium situations. This violation of
the FDT is an important tool for studying nonequilibrium physics. In this paper we
present results for the violation of the FDT in the Kondo model where the impurity spin
is frozen for all negative times, and set free to relax at positive times. We derive exact
analytical results at the Toulouse point, and results within a controlled approximation
in the Kondo limit, which allow us to study the FDT violation on all time scales. A
measure of the FDT violation is provided by the effective temperature, which shows
initial heating effects after switching on the perturbation, and then exponential cooling
to zero temperature as the Kondo system reaches equilibrium.

KEY WORDS: Fluctuation-dissipation theorem, Strongly-correlated electrons, Kondo
problem, Non-equilibrium many-body systems.

1. INTRODUCTION

The fluctuation-dissipation theorem (FDT)(1) is of fundamental importance for
the theoretical understanding of many-body problems. It establishes a relation
between the equilibrium properties of a system and its response to an external
perturbation. In nonequilibrium situations this powerful tool is in general not
available: typical nonequilibrium situations are e.g. systems prepared in an excited
state, or systems driven into an excited state by pumping energy into them. Since
such nonequilibrium systems occur everywhere in nature, the investigation of
nonequilibrium many-body physics has become one of the key challenges of
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modern theoretical physics. The violation of the FDT in a nonequilibrium system
plays an important role in such studies as it characterizes “how far” the system is
driven out of equilibrium.

Most widely investigated in this context are glassy systems, that is systems
with a very long relaxation time compared to the typical time scale of measure-
ments. Due to the long relaxation times it is experimentally possible to measure the
deviation from the FDT, i.e. to study the ageing effects: one observes a relaxation
of the nonequilibrium initial state towards equilibrium. For a review of this field
see Refs. (2, 3).

However, these are classical systems at finite temperature and therefore the
classical limit of the FDT is studied. Nonequilibrium zero temperature quantum
systems provide a very different limit which has been studied very little in the
literature. Notable exceptions are the nonequilibrium dynamics of Heisenberg
spin chains in a dissipative environment,(4−7) quantum brownian motion,(10) and
one–dimensional quantum phase transitions.(8,9) This provides one of the main
motivations for our work which looks at the FDT violation in the time-dependent
Kondo model at zero temperature. Time-dependence is here introduced by freezing
the impurity spin at negative times, and then allowing it to relax at positive times.

Besides being of fundamental theoretical importance as the paradigm for
strong-coupling impurity physics in condensed matter theory, Kondo physics is
also experimentally realizable in quantum dots. The Kondo effect has been ob-
served in quantum dot experiments,(11) and time-dependent switching of the gate
potential amounts to a realization of the time-dependent Kondo model(12) which
should be possible in future experiments.

Our calculations here are based on recent work on the time-dependent Kondo
model with exact analytical results for the Toulouse point and results in a con-
trolled approximation in the experimentally relevant Kondo limit.(13) We will see
that the FDT is maximally violated at intermediate time scales of order the inverse
Kondo temperature: the effective temperature becomes of order the Kondo tem-
perature due to heating of the conduction band electrons by the formation of the
Kondo singlet. The system then relaxes towards equilibrium and the FDT becomes
fulfilled exponentially fast at larger times.

2. FLUCTUATION-DISSIPATION THEOREM

Consider an observable A which is coupled linearly to a time-dependent
external field h(t). The Hamiltonian of the system is then given by

H = H0 − h(t) A, (1)

where H0 is the unperturbed part of the Hamiltonian. The generalized susceptibility
(or response) R(t, t ′) of the observable A at time t to the external small perturbation
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h(t ′) at time t ′ is defined as

R(t, t ′) = δ〈A(t)〉
δh(t ′)

∣∣∣∣∣
h=0

. (2)

Here 〈A(t)〉 ≡ 〈A(t)〉h − 〈A(t)〉0 is the deviation of the expectation value from its
equilibrium value. If the system is in equilibrium before its perturbation by the field
h, then R(t, t ′) depends only on the time difference τ = t − t ′. One introduces the
Fourier transform of R(τ )

R(ω) =
∫ ∞

0
R(τ )eiωτ dτ, (3)

where the integration runs only over positive times as a consequence of causality.
A simple calculation shows that the imaginary part of R(ω) is proportional to the
energy dissipated by the system for a small periodic perturbation with frequency ω

(see, for example, Ref. (14)). Thus the response function determines the dis-
sipation properties of the equilibrium system.

For calculating the response function one defines the two-time correlation
function

CA,A(t, t ′) ≡ 〈
A(t)A(t ′)

〉 = 1

Z
T r

[
A(t)A(t ′)ρ

]
, (4)

with the operators in the Heisenberg picture

A(t) ≡ exp (i Ht) A(0) exp (−i Ht) . (5)

The trace runs over all the states in the Hilbert space, ρ is the density matrix and
Z the partition function. Symmetrized and antisymmetrized correlation functions
C{A,A}(t, t ′), C[A,A](t, t ′) are defined in the same way

C{A,A}(t, t ′) ≡ 1

2

〈{
A(t), A(t ′)

}〉
(6)

C[A,A](t, t ′) ≡ 1

2

〈[
A(t), A(t ′)

]〉
. (7)

The cumulant of the symmetrized correlation function is

C (cum)
{A,A}(t, t ′) ≡ C{A,A}(t, t ′) − 〈A(t)〉 〈A(t ′)〉. (8)

In the framework of linear response theory (that is for small perturbations) one
then proves the famous Kubo formula(15)

R(t, t ′) = 2iθ (t − t ′)C[A,A](t, t ′). (9)

Here the time dependence of all operators is given by the unperturbed part of the
Hamiltonian H0. Since in equilibrium all correlation functions depend only on the
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time difference τ = t − t ′, one defines their Fourier transform with respect to τ

C (cum)
{A,A}(ω) =

∫ ∞

−∞
C (cum)

{A,A}(τ ) eiωτ dτ. (10)

If the initial state is the equilibrium state for a given temperature, R(ω) and
C (cum)

{A,A}(ω) are related by the famous Callen-Welton relation,(1) which is also known
as the Fluctuation-Dissipation theorem

Im R(ω) = tanh

(
βω

2

)
C (cum)

{A,A}(ω). (11)

Here β is the inverse temperature. For T = 0 Eq. (11) reads

Im R(ω) = sgn (ω) C (cum)
{A,A}(ω). (12)

Eqs. (11) and (12) relate dissipation with equilibrium fluctuations, which is the
fundamental content of the FDT.1

3. FDT VIOLATION IN NONEQUILIBRIUM

Let us recapitulate why the FDT (11) in general will not hold in quantum
nonequilibrium systems. We will only consider the zero temperature case since
it brings out the quantum effects most clearly; the generalization to nonzero
temperatures is straightforward.

We first consider how a typical experiment is actually performed: the system
in prepared in some initial state at time t = 0 (not necessarily its ground state)
and then evolves according to its Hamiltonian. A response measurement is then
done by applying the external field after a waiting time tw > 0, and the response
to this is measured a time difference τ later. The Fourier transform with respect to
(positive) time difference will then in general depend on the waiting time tw

R(ω, tw) =
∫ ∞

0
R(tw + τ, tw) eiωτ dτ. (13)

Likewise in an experimental measurement of the correlation function the first
measurement of the observable will be performed after the waiting time tw, and
then at time tw + τ the second measurement follows. From the experimental point
of view this leads again to a one-sided Fourier transform

C (cum)
{A,A}(ω, tw) = 2

∫ ∞

0
C (cum)

{A,A}(tw + τ, tw) cos(ωτ )dτ. (14)

1 Eqs. (11) and (12) are often formulated with the connected correlation function instead of its cumulant
appearing on the rhs. One can easily verify that this makes no difference in equilibrium. However,
using the cumulant is the suitable generalization for nonequilibrium situations, see e.g. P. Sollich, S.
Fielding, and P. Mayer, J. Phys. C: Cond. Matter 14, 1683–1696 (2002).
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If the system is prepared in its ground state, or if the system equilibrates into its
ground state for sufficiently long waiting time tw → ∞, then we can replace this
one-sided Fourier transform by the symmetric version and arrive at the conven-
tional equilibrium definition (10).

However, for a nonequilibrium preparation at t = 0 Eqs. (13) and (14) are the
suitable starting point for the discussion of the FDT (12). Let us therefore look at the
FDT in the framework of (13) and (14). We follow the standard derivation(14) and
introduce a complete set of eigenstates |n〉 of the Hamiltonian H , H |n〉 = En|n〉.
The matrix elements of the operator A are denoted by Anm = 〈n|A|m〉 in this
basis. Then a matrix element of the susceptibility is given by

R(t, tw)nn′ = iθ (t − tw)
∑

m

Anm Amn′

× (
ei(En−Em )t ei(Em−En′ )tw − ei(En−Em )tw ei(Em−En′ )t) (15)

The imaginary part of (13) is

Im R(ω, tw)nn′ = Re
∑

m

Anm Amn′

∫ ∞

0

(
eiωnmτ − eiωmn′ τ ) eiωnn′ tw eiωτ dτ (16)

with ωnm ≡ En − Em . For diagonal matrix elements n = n′ this implies

Im R(ω, tw)nn = 1

2

∑
m

Anm Amn (δ(ω + ωnm) − δ(ω + ωmn)) . (17)

Likewise for the correlation function

C{A,A}(ω, tw)nn′ =
∑

m

Anm Amn′

∫ ∞

0

(
eiωnmτ + eiωmn′ τ ) eiωnn′ tw cos(ωτ )dτ (18)

and the diagonal matrix elements are

C (cum)
{A,A}(ω, tw)nn = 1

2

∑
m �=n

Anm Amn (δ(ω + ωnm) + δ(ω + ωmn)) . (19)

If we take |n〉 = |GS〉 as the ground state of our Hamiltonian, i.e. the system is in
equilibrium, then we know ωnm = EGS − Em ≤ 0 and ωmn = Em − EGS ≥ 0 for
all m. For positive ω therefore only the first terms in (17) and (19) contribute, and
for negative ω the second terms contribute: this just proves the zero temperature
FDT (12) with its sgn(ω)-coefficient.

Now let us assume the nonequilibrium situation described above where the
system is prepared in some arbitrary initial state |NE〉 at t = 0. One can expand
|NE〉 in terms of the eigenstates |n〉 of the Hamiltonian

|NE〉 =
∑

n

cn|n〉 (20)
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with suitable coefficients cn . Then the relations (16) and (18) are modified like

Im R(ω, tw)NE =
∑

m,n,n′
c∗

ncn′ Anm Amn′ × . . .

C{A,A}(ω, tw)NE =
∑

m,n,n′
c∗

ncn′ Anm Amn′ × . . . ,

where “. . .” stands for the same expressions as in (16) and (18). In general this
will lead to a nonzero difference

sgn(ω) C (cum)
{A,A}(ω, tw)N E − Im R(ω, tw)N E �= 0 (21)

and therefore the FDT is violated. We will next study the violation of the FDT
explicitly in the time-dependent Kondo model, and in particular also show that the
difference (21) vanishes exponentially fast for large waiting times tw.

4. TIME-DEPENDENT KONDO MODEL

We briefly review the results obtained in Ref. (13) for the spin dynamics of
the time-dependent Kondo model. The time-dependent Kondo model is described
by the Hamiltonian

H =
∑
k,α

εk c†kαckα +
∑

i

Ji

∑
α,β

c†0α Si σ
αβ

i c0β. (22)

We allow for anisotropic couplings Ji = (J⊥, J⊥, J‖) and consider a linear dis-
persion relation εk = vF k. We have studied two nonequilibrium preparations in
Ref. (13): I) The impurity spin is frozen for time t < 0 by a large magnetic field
term h(t)Sz that is switched off at t = 0: h(t) � TK for t < 0 and h(t) = 0 for
t ≥ 0. II) The impurity spin is decoupled from the bath degrees of freedom for time
t < 0 (like in situation I we assume 〈Sz(t ≤ 0)〉 = +1/2) and then the coupling
is switched on at t = 0: Ji (t) = 0 for t < 0 and Ji (t) = Ji > 0 time-independent
for t ≥ 0. For both scenarios the impurity spin dynamics could then be described
by an effective time-dependent resonant-level Hamiltonian in terms of fermionic
solitons 
k consisting of spin-density excitations:

H =
∑

k

εk 

†
k 
k +




∑
kk ′

gkk ′ 

†
k 
k ′(d†d − 1/2), t < 0

∑
k

Vk (
†
k d + d†
k ), t > 0

(23)

with effective parameters gkk ′ and Vk (which also depend on scenario I or II).
The impurity spin Sz is given by Sz = d†d − 1/2. Since the effective Hamiltonian
is quadratic for both negative and positive times, it is straightforward to find an
explicit solution for the impurity orbital correlation functions and work out their
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dependence on the waiting time. Detailed inspection(13) shows that the impurity
spin dynamics is the same for both nonequilibrium initial preparations I and II.

5. TOULOUSE POINT

At the Toulouse point(16) with J‖/2πvF = 1 − 1/
√

2 the mapping to the
effective resonant level model (23) is exact and the effective parameters gkk ′ and
Vk are independent of k, k ′. This allowed us to express the spin-spin correlation
functions in closed analytical form(13)

C (cum)
{Sz ,Sz}(τ, tw)

def= 1

2
〈 {Sz(tw), Sz(tw + τ ) }〉 − 〈Sz(tw)〉 〈Sz(tw + τ )〉

= 1

4
e−2τ/tB (1 − e−4tw/tB )

− (
s(τ ) − s(tw + τ )e−tw/tB + s(tw)e−(tw+τ )/tB

)2
(24)

for the symmetrized part and

C[Sz ,Sz ](τ, tw)
def= 1

2
〈 [Sz(tw), Sz(tw + τ )] 〉

= −i e−τ/tB
(
s(τ ) − s(tw + τ )e−tw/tB + s(tw)e−(tw+τ )/tB

)
(25)

for the antisymmetrized part. Here s(t)
def= (tB/π )

∫ ∞
0 dω sin(ωτ )/(1 + ω2t2

B) with
the shorthand notation tB = πwtK. w = 0.4128 is the Wilson number and tK =
1/TK is the Kondo time scale, i.e. the inverse Kondo temperature. In this paper we
use the definition of the Kondo temperature TK via the zero temperature impurity
contribution to the Sommerfeld coefficient, γimp = wπ2/3TK.

From (24) and (25) one can obtain the Fourier transforms (13) and (14).
Results for Ccum

{Sz ,Sz}(ω, tw) and ImR(ω, tw) for various waiting times tw are shown
in Fig. 5. For zero waiting time tw = 0 the FDT is trivially fulfilled since the system
is prepared in an eigenstate of Sz and therefore both functions vanish identically,
C (cum)

{Sz ,Sz}(ω, tw = 0) = Im R(ω, tw = 0) = 0. For increasing waiting time the curves
start to differ, which indicates the violation of the FDT in nonequilibrium. For large
waiting time as compared to the Kondo time scale one can then see nicely that the
curves coincide again, which shows that the system reaches equilibrium behavior
for tw → ∞ where the FDT is known to hold. From the curves in Fig. 1 one
also notices that the maximum violation of the FDT occurs at zero frequency,
while it becomes fulfilled more rapidly at higher frequencies. We interpret this
as showing that high-energy excitations find “equilibrium-like” behavior faster
than low-energy excitations probed by the small ω response. The high-energy
components of the initial nonequilibrium state can “decay” more quickly for a
given waiting time.
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Fig. 1. (color online) Universal curves for the spin-spin correlation function TK × C (cum)
{Sz ,Sz }(ω, tw)

(solid line) and response function TK × Im R(ω, tw) (dashed line) at the Toulouse point. Notice the
normalization of the equilibrium curve (tw → ∞) which follows from (6) with the operator identity

S2
z = 1/4: this gives

∫ ∞
0 C (cum)

{Sz ,Sz }(ω, tw = ∞)dω = π/4.

At zero frequency C (cum)
{Sz ,Sz}(ω = 0, tw) is non-zero for 0 < tw < ∞ as if one

were studying the spin dynamics of the equilibrium system at finite temperature.
This leads to the definition of the effective temperature Teff via the zero frequency
limit of (11)

lim
ω→0

Im R(ω)

ω
= 1

2Teff
C (cum)

{A,A}(ω = 0). (26)

This concept of an “effective temperature” is frequently used and well-established
in the investigation of classical nonequilibrium systems.(17) We suggest that it
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Fig. 2. (color online) Effective temperature Teff as a function of the waiting time tw at the Toulouse
point. The inset shows the same curve on a linear scale to illustrate how fast the initial heating occurs.

is also useful in a quantum nonequilibrium system by giving a measure for the
“effective temperature” of our bath (i.e. the conduction band electrons) in the
vicinity of the impurity.

We can see this explicitly by using (26) to evaluate the effective temperature
as a function of the waiting time; the results are shown in Fig. 2. One sees that the
effective temperature goes up very quickly as a function of the waiting time until
it reaches a maximum of Teff ≈ 0.4TK at tw ≈ 0.1tK. After that the system cools
down again. We can understand this by noticing that the conduction band is initially
in its ground state with respect to the Hamiltonian for t < 0, therefore its effective
temperature vanishes. As the spin dynamics is turned on at t = 0 the Kondo singlet
starts building up. Its nonzero binding energy therefore initially “heats up” the
conduction band electrons. After a sufficiently long time the Kondo singlet has
been formed and then the process of energy diffusion takes over: the binding
energy that has initially been stored in the vicinity of the Kondo impurity diffuses
away, the system equilibrates and the effective temperature goes back to zero. The
behavior of the effective temperature therefore traces this competition of release
of binding energy and energy diffusion away from the impurity. Analytically one
can show for very small waiting time tw � tK

Teff

TK
� 1

w

1

ln(πw tK/tw)
(27)
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and an exponential decay to zero temperature for long waiting time tw � tK

Teff

TK
∝ e−tw/tK . (28)

Finally we want to emphasize that while the effective temperature seems
a useful phenomenological concept for interpreting the ω = 0 behavior in
nonequilibrium, its definition (26) does not capture the small ω-behavior. Since
C (cum)

{Sz ,Sz}(ω, tw) − C (cum)
{Sz ,Sz}(ω = 0, tw) ∝ |ω| is nonanalytic for small ω and finite

waiting time (see Fig. 1 and the discussion in Ref. (13)), the long time decay
of the spin-spin correlation function is always algebraic for all tw > 0 (therefore
characteristic of equilibrium zero temperature behavior), C (cum)

{Sz ,Sz}(τ, tw) ∝ τ−2.

6. KONDO LIMIT

The Kondo limit with small coupling constants J⊥, J‖ → 0 is the relevant
regime for experiments on quantum dots. In this regime the results in Ref. (13) are
not exact, but were shown to be very accurate by comparison with asymptotically
exact results for tw = 0 and τ/tK � 1.(18) For our purposes here the main differ-
ence from the Toulouse point analysis is the nontrivial structure of the effective
parameters gkk ′ and Vk from Ref. (13) in (23). This makes it impossible to give
closed analytic expressions like (24) or (25), but the numerical solution of the
quadratic Hamiltonian (23) is still straightforward. The results presented in this
section were obtained by numerical diagonalization of (23) with 4000 band states.
The numerical errors from the discretization are very small (less than 2% relative
error in all curves).2

Fig. 3 shows the behavior of the spin-spin correlation function and the re-
sponse function obtained in this manner. Similar to the Toulouse point results we
observe a violation of the FDT for finite nonzero waiting time, 0 < tw < ∞. For
tw → ∞ one recovers the FDT exponentially fast (28) as expected since the sys-
tem equilibrates. The results for the effective temperature in the Kondo limit are
depicted in Fig. 4. While the behavior of Teff (tw) is somehow more complicated
than at the Toulouse point, the interpretation regarding heating and cooling effects
carries over without change. The main difference is that the maximum effective
temperature is already reached for tw ≈ 0.03tK in the Kondo limit. We interpret
this as being due to the (dimensionful) bare coupling constants at higher energies
that are larger than the renormalized low energy scale TK and therefore lead to
faster heating.

2 Notice that a large number of band states is important for analyzing the behavior for small waiting
time: one must ensure that tw � 1/� where � is the ultraviolet cutoff in order to obtain universal
curves that only depend on the low energy scale TK.
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Fig. 3. (color online) Universal curves for the spin-spin correlation function TK × C (cum)
{Sz ,Sz }(ω, tw)

(solid line) and response function TK × Im R(ω, tw) (dashed line) in the Kondo limit (compare with
Fig. 1).

7. CONCLUSIONS

Our investigation of the zero temperature quantum limit of the fluctuation-
dissipation theorem in the time-dependent Kondo model provides some important
lessons regarding its relevance in quantum nonequilibrium systems. For the Kondo
system prepared in an initial state with a frozen impurity spin, i.e. in a product state
of system and environment, the FDT is violated for all nonzero waiting times tw
of the first measurement after switching on the spin dynamics at t = 0. For large
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Fig. 4. Effective temperature Teff as a function of the waiting time tw in the Kondo limit. The line is
a guide to the eye. The size of the datapoints (circles) indicates the numerical error. The datapoint for
tw/tK = 5.5 is numerically indistinguishable from zero.

waiting times as compared to the Kondo time scale the FDT becomes fulfilled
exponentially fast, which indicates the quantum equilibration of the Kondo system.
A quantitative measure for the violation of the FDT is provided by the effective
temperature Teff

(17) here defined via the spin dynamics (26) and depicted in Figs. 2
and 4. It traces the buildup of fluctuations in the conduction band: Initially, the
conduction band electrons are in equilibrium with respect to the Hamiltonian for
t < 0. Then in the vicinity of the impurity they get locally “heated up” to Teff

about 0.4TK (Toulouse point)/ 0.45TK (Kondo limit) due to the release of the
binding energy when the Kondo singlet is being formed. Eventually, this excess
energy diffuses away to infinity and Teff reaches zero again. In this sense the largest
deviation from zero temperature equilibrium behavior occurs for tw ≈ 0.1tK at the
Toulouse point, and for tw ≈ 0.03tK in the experimentally relevant Kondo limit,
with very rapid initial heating (see the inset in Fig. 2). These observations could
be relevant for designing time-dependent (functional) nanostructures with time-
dependent gate potentials(12) since they give a quantitative insight into how long
one needs to wait after switching for the system to return to (effectively) zero
temperature.

From a theoretical point of view it would be interesting to study the FDT for
other observables (like the current) and in other nonequilibrium quantum impurity
systems in order to see which of the above observations are generic. Notice that
the “effective temperature” will generally depend on the observable chosen for its
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definition in (26)(19), though we suggest that the qualitative behavior (rapid initial
increase and exponential decrease) will be similar for all local observables. Work
along such lines is in progress in order to substantiate the concept and notion of an
“effective temperature” qualitatively characterizing the evolving nonequilibrium
quantum state, and to explore its usefulness in quantum nonequilibrium models in
general.
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